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A NUMERICAL METHOD FOR THE RADIATION TRANSPORT EQUATION

IN PLANE GEOMETRY.

I. INTRODUCTION

The scope of work reported here is the 4evelopment of a numerical

method for performing time dependent calculations of radiative energySsabs pcV •-t(J.

transport through slabs/ O guiding interest has been the retaining of

contact with the diffusion approximation by maintaining a parallel of

numerical methods. In doing so, it has been found that the radiation

intensity may effectively be eliminated from the equations and from

computer storage. As is the case in the diffusion approximation, only the

material temperature remains. Conservation of energy is also a direct

consequence of the method. However, to accomplish this objective a number

of simplifications have been made which may limit the possibility of

generalizing the method. These include the assumptions of:

1. Plane slab geo try and boundary conditions of several simple

types.

a. Free surface radiating into vacuum.

b . Opaque surface with zero flux.

c. Specified forward or backward flux into the slab.

2. Negligibility of the time for photon flight between emission

and absorption. Related neglect of the specific heat of the

radiation field in comparison with the specific heat of the

material.

3. Local thermodynamic equilibrium of the material.

4. Interaction of radiation with material only through true

absorption. No photon scattering. Frequency independent

absorption coefficient.
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Several of these assumptions, namely 2, 3, and neglect of scattering,

may be satisfied by restricting consideration to low temperature transport

through materials of not too small density. The more serious approximation
of frequency independence of the absorption coefficient has been'made in

order to separpte the two important problems of th6e geometrical behaviCr

and the frequency behavior of the radiation transport equation. Extension

of the present method to"include groups of photons having different absorption

coefficients will probabl not offer serious difficulties. to the present

method. However, it is by no means clear that extension of this basic

"procedure to other' geometries can be made. In this sense, the present work

iS.of interest in its special. applicability to slab problems. In compensation

it offers a rather simple system of equations having small storage require-

ments, and light stability restrictions which allow, rapid solution of radiation

transport problems. . .

"II. INTERAL EUATION FOR RADIATIVE TRANSFER

The assumptions of'plane geometry and azimuthal symmetry of the

radiation intensity permit considerable simplification, of the equations of

radiative transfer. As will be shown, the equation for the rate of change

of material energy for this case can be reduced to an*integral equation in

which all reference to the intensity of the radiation field has-been elimi-

nated.

The equation for the rate of change of the intensity of the radiation

field I- i's:

cat- + A T -Pd

where

g= cos Q , '= polar angle of radiation,



(3
* . (I- e)cy-, - absorption coefficient and

aý takes account of the induced emission of the material.

2h __d3
* B 03 eh-d/KT-

is the Planck function source assuming that the material collision rate is

sufficient to establish local .thermodynamic equilibrium in the material

characteriz ed by a material temperature T. Photon scattering and polari-

zation are neglected in'Equation (1).

Dropping the subscript indication of frequency and introducing the

optical depth

C 0-. dxýo

the intensity I at position Z-and'.in direction p can be expressed from

Equation• (1) in terms of the Planck function at points along the photon

pencil of radiation:

L'= [ (o eý d7 +I (b-o) (2)

0

The effect of retardation or time of photon flight from the source has been

neglected so that the intensity is approximated as depending only on

instantaneous values of the Planck function. This corresponds to neglecting

the first term of Equation (1) and is justified when the temperature waves

travel much slower than c. The integral extends into the material to an

arbitrary depth r at which point .the intensity- in the 4 - direction is

I (fo)• This point may. be taken as the boundary of the system or it might

be a depth beyond which the contribution to I is negligible.

Having neglected the time dependence of the Boltzmann equation, the

dependence on time of the radiation :transport equation arises from the change

of energy as governed by the first law of thermodynamics. In general, the

total internal energy changes as a result of motion of the material and

of entropy changing processes such as heat conduction. We wish to set in
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evidence in this discussion the characteristics of radiative transfer;

consequently, we neglect all other mechanisms of energy change, including

work, and write:

a.t ax at

. where EM is the material internal energy per unit volume, E. is the radiant

energy per unit voiume given.by:

:. : . .=2 d I d•

and "

F 2icf d:-f I .Ldtl (4)
S" i: ':" • ". "*o "-i

is the component of radiant energy flux along the x- direction. Since a.

numerical approach paralleling the diffusion treatment is ultimately desired,

S .'Equation (3) is integrated over a small interval to give the integral

"" .. expression for energy- conservation. Indeed, the integral equation could

• . equally well have formed the starting point of the- nvestigation. In the

. resulting conservative form the way to insure conservation of energy in the

' .. difference equation becomes clear. The desirability of this conservative
property of the equations in fact dictates the choice of the followIng

S..system over alternative .forms based on.the differential equation, EquationS .......I.. . .'(3) .

X2
"""dx•(x) -. F(x2 ) ()

In the above we have neglected the rate of change of radiative energy in

"comparison with that of the material energy as is justified for low

temperature interactions.

In order to remove the explicit appearance of I from Equation (4)
for the fluxes, we use Equation (2) to obtain an integral expression in

- which the sources of radiation in the emission of the material are displayed.

Forward and backward directions are treated separately: for the forward
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direction, p 0, the integral extends from = -oo where I o) = 0;

for p-e.0 we take = +ooand again assume I() = 0.

I B M. e d 4 ,

rzd (-l) e d. 4 . (6)
-1 1:'

'The angular .integrations in Equations (6)'are particularly simple

because the source B does not depend on the angle. Introducing the E (x)

functions2 defined by:•

x

*E' (x) e ý~pL.: dj.±
n.

these expressions become.

..

•

- ~Ipgdp= BE,((51 ~ dj *r'
dE2x2 =IE (7 .).d

Equation (E) becomes: 
... (8

Eqato:()wh isth strtn p int of the, nuerica wor expres.es
t de t r o othese atenuaeds "oucoe a 'te p h i v

• T Xa -coo "

•~ ~ -' Z.2'-• :. 7

B i'C dV 00. E2 •l Rij ("8) : '' .

Equation (5)behcomes" the start...'..."ing.i'.: po....: int .... the numeica wor .]ex" p.. " "" . " .

of E2 functions instead of the exponential arises from weighting with more

see, for example, Appendix A of "Introduction to+ the Theor'y of Neutron.
Diffusion" by K. M. Case, Geor"e Placzek, '..deHofann, Los Alamos
Scientific Laboratory notes~.
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strongly attenuated oblique rays while the positive and negative terms

correspond with forward and backward contributions to the flux integral..
We illustrate~the nature of the contributions to Equation (8) by schematically

indicating the behavior of the kernels of the-integrands.

1 2

For completeness, we re-turn-to the differential expression, of
Equiton.(3) to tabult ee al ' altrnative forms which may be fneet

•qa 'lt seea. .1,eo . ineet

Forming +.~ fror, Equaio

aEM FE _ 7t d .00L'

t ax dJ cat

-in which Equation (1) has been used. Equation. (9) expresses the statement

that the rate~of change~of material ener~ is the difference between rates

of absorption of I-(which occurs only in the avej~age intensity) Equation (2)-



for I is integrated separately in the forviard axnd backward directions!-

Thus, the integrals contributing to Esimilar .to Equations (6), ..are

10 1r 1 d ~ 1 Zzd'

I f~ I4..dVýJ e E1 (V- ?

00

Using these results in Equa~tioni (9), 'the. ýequation .determiningth teprdture

of the material is:

.0 =2Ef a dL[2BCC). fB(V)E I-? )(0

where C -is the specific heat at constant volume of.t he material and:B(Z).
* ..V.

.depends on position through the temperatuie- .U'ýse o .f Equ at ion' (-2) -for I1 in.

which p~hoton retardation has. been negl e ,ted implies in -biiati~onj (iO): that

the energy in the radiation field must -be. small, e'nough compared with' that of

.. .the material to warrant omission-from the energy equation. :Eqliation. (10)

*is a nonlinear integro- differential eq4uation for the temperature containing

* no further reference.to. th~e radiation~field intensities. The terms correspond-

*.ing to .ýhe emission and absorpt~ipn of energy by the material, are displayed

.as the negative and positiveixiembers. of -Equati6n-:(l0)'. 'The limiting case

of optically thin :material in a vacuum-is given by-ýhe.first term; the

frequency integral of it gives thie well known "Planck Mean. Absorption
CoeI'ficient" which is frequently.66i4e:tghr vith'the'Ros seland mean'

from. absorption coefficie.nt values.

The integral describing the cbntribution fr6m absorption to'.the.'

energy change in Equation (W) can be transformed through integration by_.-*

parts..

0C. )E(?-z 0t BZ 2 ~ )d
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Substitution in Equation (i0) gives the following alternative form:

C T 21 c r' d 'dB
Cv• •jo •' d) [J•-I•E2 ( )d

v dt f
_ dB ',"

. V E 2( '

Further integration 'by parts in Equation (11) yields: .

C E• 07 dZ.. .'7."T __ •~ 2 '" - ..-- .-- d E3 ( - i) d" .. 1..)..
ddt . -' d('22 3.Jo. .

III. LIMITING EXPRESSIONS AND APPROXIMATIONS'

* .Equation (12) is a convenient form to-discuss the limiting case i"" .

which the temperature changes by a small amount within a mean-free path.

Expansion of B"' (Z') about' the point "7 allows the evaluation of the* lead-

ing term of the integral in Equation (12). 'The result is:

d 4 Jýc LB- d, . 4 c d dB d.1)Cv dt .3-Jo - 3 U Fr
0x dxý

0.04
Snc d dT 1dd) ca d 1 " 13)'

3 dx. .dx -dT- F 3 dx o-R -.

where CIO } '... .

-'fo T.

'a B d " "
dT'

is the Rosseland mean-free path. Equation (13) gives the radiative diffusion

approximation in which the energy of the radiation field has been neglected.

The optically thin 're-sult obtained from Equation (10) is the opposite

extreme in approximation
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c dT _ caT4 (14)
v dt p

where

" ,. ,. • ..

is the Planck meaiE absorption coefficient. ... :

, If the absorption coefficient depends on type of material;' denity.

"and temterature but not on the' frequency "(the '"gray atmosphere" -approximation) .
The integration over frequency can be carr'ied out in Equat~i6n (10):

*LT _4,ca (-L (
ca T + T 7j)E.(I5)• " " "v dt 2 "

".The" correspondifig approximation to Equation (8.) 1s obtained -by using the'

following value of F(xj) in Equation (5): ."

2. J J ' ]. '"F" ' ... • --[IkJ )Eo (z - "c')dC T'4 (z') •'(•' - ?•j) a-tj .(16.,

IV. DIFFERENCE EQUATIONS FOR RADIATION TRAI'SPORT

In foriiulati~ng a suitable numerical approximation: to Equation (5)
we keep in mind several criteria. The method should

l.- be as simple and easy to compute as possible

'2. retain property of energy conservation
3. be sufficiently accurate to limit to the diffusion and

transparent regimes properly

4. have an adequately wide region of numerical stability to

permit fast integration forward in time.

In conformity with the radiation diffusion - hydrodynamics treatment,

the region of interest is divided into a limited number of adjacent slabs
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or zones. In each zone the characteristic temperature is chosen so that

the corresponding specific. energy when multiplied by the zone mass gives
the correct t6tal: zone energy. As a first approach to this method, we

devise a simple explicit, .'treatment of 'the. temperature. The time derivative

of the material energy is written as:.

' . -+12 (T / 2 T" . 12/ , (17)

S an excpresion which permitsthe! temperature .to.be explicitly determined

when the right i ana side of-'the 'eqvationi- ovaluated'\it. quantities known

at:'timenh. "The- quantiti'es m-+/,Gv.,i' ' are the* zone mass and 'specific

"heat; -Th'e.att qu.anti'm• y. 'y.d~pend: on. time 'through .its* temperature

dependence.'•• As: indicated' iin a• subsequent. section, "this- formulation is

expected".... il'"-vc'ohditiSnal: stabiity. The.. also will' be errors of second,

order in:' the'tim 'inter' h e' idn the corresponding explicit treat-

mentof the radiation'. diffuds:on• t•trre'atm ' t.

"In"com:fomi h: . wit d. ird criterion ab6ve. it."is necessary to use

"some careAn inevluating :'the ihterals .contributing. o: the radiation flux.

In 'par LS.culr, the:.slimle.st: sheme, in which the source i-s'.taken to be constant

in each z6ne6 "d6es' not 'imit'properly to"the diffusion expression. As would

"be expected from the...fac't 'thatý'the diffusion flux is.given as a first

derivative,':'it is necessary in the -zones inmediately adjacent to the boundary

at which the :fluic is evaluated t6. use a "linear interpolation of the.source

,trength. In' zones farther 'away the criterion of. simplicity suggests'

assumption of donstant source strength .for the. "til" of the- integration.

Since.,the independent .varilable ih.lie flux integrals* is.the optical depth

it:,:.is'inecessary to evaluate it at zone interfaces 'on each cycle'of the..

"calculation..: At time n the depth'is given gixiwply'by:
. . • ,., - l ' .. - ."- !"6 . . .'J-i '

"- - ' ~ R ' Xi(18)

t - 'n

in whlich g-' is evaluated from the zone temperatures Ti~i' 2 . The optical

depth of the zone center is.. 1 / 1/2 (5J ++1" 'Intervals



in the optical depth in general are expected to depend on position requiring

that the interpolation formula be correspondingly more general.

In'evaluating F(x,) from Equation (16), the use of linear interpolation

is restricted to the half-zone on either side of the zone interface. In

this region the fourth power of the temperature is given by interpolation:

14T ~a +3 (z-z

where

-~ l) -. +-? .- , ....SJ-1 J+1/2 j+ l -J u J)'-1/2 . 1)

4 4

• 2(TJ+1/2 T -1/2)....

JJ +l - -.1"
.j l .. •.t.

Carrying out the integration introduces E3 for the constant regions and

both E and E for the linear regions. The first integral corresponding
3 4

to the -forward current in Equation (16) is. given by tho sum of .three terms:.

f a• ., /2 '-., 0 / •+E . ,Z ,,?

S,., . . .- ; - _ i • .. .
, -. J+. +j-• 71/2.': • •/

+ I E+' (C*.j~

[ 3  J+ j-1/2 () 1

1 2. . - L/ . :-

correspondingtO the. linear.region.'from Z to'_,l 2 , the constant temperature

,* .. '.alp-zone from t.1"2 . and the iemfrining zones' of constant temperature.+for.
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The analogous set of three terms for, the backward current

*bj [j1/2 E
*~3 (?-J+1/2

+/.3 E,. ([..../2 .Z . 3

Si E(21)

*, . •xT~-

are to be summed and subtracted from the forward current'to form the net'

fluX at the point Zv • The complete differehce equation' for the. temperature

resul~ts'

• 2 f.fbf4-f 3 b (22)F ca ; 1  - 2b. • *2
72 1. j , . . ,.2 -

fm. am substituting such expressions for the zone boiundary fluxes in the energy

' "Equation'(5) of which Equation (17).is the'approximation for the left hand. . .. .. . .. . : . . .. . n + 1 " '. . .I.
side*. This-expression may be solved for An Ll of the contributing

"terms are -assumed to.be functiors o.the known temperatures Tn+t which..

. may be repla.ced in storage by ithe newly calculated-values at the.j.advanced

""ime, Consequently, the method may be termed "an explicit integral formu-

• lation of the' time-dependent*'.adiation transport equation".

B L6oundary cdnditions...are derived by'.considering the flux.expression.

"A free surface, condition. c6rresponds to setting the. source to zero "for all

zones beyond the free interface. A'"hot wall" boundary to simUlate the

problem of the development of the diffusion wave from a hot source corresponds

to giving all zones be'yond a given .boundary the same temperature.
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V.' STABILITY OF THE DIFFERICE EQUATIONS

The system of difference equations,,Equation (5), with'boundar~y

*conditions and initial conditions may be solved for the'temperatur-es of-the.

*material in an explicit step-by- step numerical calculation to-obtain the.

-soluition at any desired time.' In addition to- the question of the! truncation

error incurred in the numerical approximation the question of st~ability of

*the solution must also be raised. .If. sxball,:errors, are. .itrodudc~d*, perhaps.

through rudng of the numb ers, it 'is necessary tha t the differ~nc~e eq uat ions

* nolf anliIfr the err~or~s without bound.'. It.is frequently 'the'case that an.

*inequality must be satife rnestricting :the-size -bf -the.-tiieý step to insure

.the stability of the solution in this sense.*

*.. Iihvestigation of stability of -the, nonlinear -equation with boundsary.

*conditions'is a job'beyond.thc scope. of thi~s inves~tipgation. -Ilowever,* a:..-

* . more modest effort will indicate some 'of the-practical liýmitations to.be

* observed ih.the numeric~al work to follow' "As is generally done L-1 thi s-

* situation, the equations are linearized and'the Von Neu.mann criter ion is,

* invoked*. Introducing the .deiiendent variable (T- /~ the-equations..

become linear with c6nstaxnt 0 oefficients 1nrovided that,:. the soluuion is':

*. restricted 'to small variations..

k4(Tn+/ )3 6~t: +~/ '.l2 i/2') if'j

-f -fi f b b~ b -b+b + b. b
IlJ+1 2j+l 3j Fl1 ij *2J 3 j 1 .j+l .2. j4l-1-. 3j3

(23)

The f's and b's are functions of th~e in accordance with the explicit

formiulaLion of the system. Since these equations are now linear equations,

With (uori utiuc .!ocully) constant coefficients, they also havc the saine formýi

as the equations goverrning pr~opagation of small errors. The solution is,

assumed to have the form:

t e it)=e e at(24)



in which the wave number k plays the role of a free parameter while a is

to be determined. For stability

le at 1lfor*all k

since the above- is the aimplification factor of the so-lution'in one;-time .

inter-val. .

in' order to* f~uther simplify the analys~is the mesh interval-and..

a~bsorption coefficient are assumed constahnt. Thus,

i+1/2'

A. . Aj+1  x A for al i

*.. . hidh-permits some terms to drop out of the..flux. Susiuigthe 'as~sumed_

..*solution Equation (24) *into* Equation (23) an'd diLvicing by -+/2one obta~ins-

fo 1)- f 1 4..f f bl b'
lj~/ý 2,j Y.J~. 1j j..7. 3 J

* .. . f'. -f' ' +b' .t bý' 1+ Ib'.*

* 1 j+l 2j~ 2* j+'1j-l ~ - .J+1 *

* ~~~where,. .. ..

*~ ~ * .. 
v j +1/2.

J1/. 2 ca (T /1 2 )
3 At.,

* .E 3  A~ -'/ + E4 3 ()
* . 3 3i]- *() ~

f , - k~+1)A [E3 r,6) - 3 (n+l) A
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=bj cl 1/2E 3  ] + pl I" E4 E3(

2b 3 ~ 3  3t.

i by=Z eikný [E3 (ni)6) E3 (n+1)A

n=i

in which

=1/2'(1 + e 1 ~

Also

e e.. ' b' b'l + ei b'
.j +1 lbJ' 2jý+1 2j 3j+ * 3

Comb iiing these terms and rearranging them

* a~ 1{Ž(15o -~ C 1/3)] E R(26)

'where

* =-2' [Cos knA6 -cos k(n+2 ).A] [. 3(nA). E 3(n+1) A]
* n=l

The terms in the summation. can'be z'etduced to. a single integral by inter-

*changing summation and'integration.

* I {( -e IL) (im~ e 1)Ae(ik --

A

+ (1- e (e (eikA e1) Ai +1
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ýLdj i e (e ik + (l e-• (e- ikA-i

e-A(ik- e1 l ~i

A L A •os k (1- cos kA) sinh + sin2 MA (cosh -= f2 e P pdp . . IL •'

A 'cosh-• -kAO J
Thb quantity E is 'a function of the two dimensionless quantities kA and A

in which MA plays the role of a parameter to be varied in order -to find the

.least stable value.

.. First, stability is considered for the limiting case. of a '.'l for

which

" "(l- 2 -os ) (1 cos ) E3 (A), A,•'c'.

Crt.In this case, e it.l since is less than the first term insuring that
1

the coefficient of 1 is Positive. It is easy to see that the most

"strieigent.stability condition is realized when kA = .(2n+l)ir , n = 0,1,2 ...

for which

4 f(A) -2 E(A-)]
.'. .Tj+i/2 A E3  . '

where-

f (A) 1 /3-E 4 ( - E~ (A) .

For A 'l , f(A) 1/3 and Z 0--o giving the limiting stability condition

: 3 0" cv:4xý

8 ca T3  A--l (27)

As is expected-from the fact that the difference equation becomes just the

explicit diffusion equation in this case, Equat'ion (27) is the diffusion

stability condition. In general, f(A) is smaller than 1/3 as shown in

Figure 1. For A z.-l an expansion of f yields:
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f' -• + - {n (2'A), l

where

An7- .5772

Having obtained the stability condition for large A it is now necessary

to investigate smaller values of A. In terms of defined quantities the

amplification factor is:

e ' cos kA) f(

While, for larbe A, the term in could be neglected it must be considered

in other cases. Some of the properties of are:

1. Z(23n + kA) Z (M)A, n 1,2,3

2. (2x M

(k A)-
c'osh -- l4. E(M• • 1 - 2j e' 7 ' L~P•

0 . cosh •

sinh -A
5. ZA(•)= J e L' - - dg, 7 0

cosh- + 1

The stability behavior for A -1'i is more complicated mathematically

than the diffusion limit discussed above because E contains the leading

term in Equation (26). It is also true that E docs not take a simple limit-

ing form in the neighborhood of kA = 0. With neither a closed form expression

*for.Z in the general case nor even one for A- 1, the investigation has

taken the form of evaluating integrals which bound E from above and below.

For A - •1 the result of the bounding argument indicates that the coefficient
of1

of-- I remains positive, that it has a maximum value near kA = 0, and that
J+it /2it rapidly falls to zero at MA 0 . The stability condition,
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A
7 j+i/2

gives the limiting time interval

pCv.
At = v

2 -ca T3

This value, depending.not at .all on the zone sizq.Ax, is just the condition

that the energy removed from an optically thin z6nte in the time interval

not drive the material temperature negative enough to produce instability.

The numerical value of the coefficient, however, depends on the lineerization

of the'equations. A.value representing the condition that the temperature

in the actual equations must not become negative in a time step is:

P.C
At ca. T3 1 (28)* ~~-a.T3 ' I

which is to be preferred over the previous value.

As a basis for stability estimates to be tested with sample calculations

the two limiting values given above are incorporated into a simple inter-

"polation formula:

I-ca T3 t A2  (29)

In an actual calculation in which the quantities entering Equation (29)

depend on the zone, the minimum value of At resulting from testing all zones

of the problem should be used to govern the time step.

BEF :mat


